Fixed Point Theorems for New Generalized Hybrid Mappings in Hilbert Spaces and Applications
نویسندگان
چکیده
In this paper, we introduce a broad class of nonlinear mappings in a Hilbert space which contains the classes of nonexpansive mappings, nonspreading mappings, hybrid mappings and contractive mappings. Then we prove fixed point theorems for the class of such mappings. Using these results, we prove well-known and new fixed point theorems in a Hilbert space. We finally give an open problem which is related to nonspreading mappings and hybrid mappings.
منابع مشابه
COUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES
In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.
متن کاملCommon fixed point theorems for occasionally weakly compatible mappings in Menger spaces and applications
In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive self-maps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867{876]introduced the notion of occasionally weakly compatible mappings (shortly owcmaps) which is more general than all the commutativity concepts. In the presentpaper, we prove common xed point theorems for families of owc maps in Mengerspaces. As applications to ...
متن کاملWeak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces
In this paper, we prove some theorems related to properties of generalized symmetric hybrid mappings in Banach spaces. Using Banach limits, we prove a fixed point theorem for symmetric generalized hybrid mappings in Banach spaces. Moreover, we prove some weak convergence theorems for such mappings by using Ishikawa iteration method in a uniformly convex Banach space.
متن کاملOn the fixed point theorems in generalized weakly contractive mappings on partial metric spaces
In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.
متن کاملRational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces
In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...
متن کامل